
From: Moody, Dustin (Fed)
To: Liu, Yi-Kai (Fed); Perlner, Ray A. (Fed)
Subject: FW: PQC API
Date: Monday, November 21, 2016 8:09:44 AM
Attachments: API4.rtf

From: Bassham, Lawrence E (Fed)
Sent: Friday, November 18, 2016 6:10 PM
To: Moody, Dustin (Fed) <dustin.moody@nist.gov>
Subject: Re: PQC API
I don’t think I sent this yet. Take a look and let me know if it looks like I got everything.
Larry

From: "Moody, Dustin (Fed)" <dustin.moody@nist.gov>
Date: Monday, November 14, 2016 at 11:00 AM
To: "Bassham, Lawrence E (Fed)" <lawrence.bassham@nist.gov>
Subject: PQC API
Larry,
Any update on the PQC API? No rush yet, but wanted to see if you’ve had any issues come up. We
need it by the end of this week for sure. Thanks,
Dustin

mailto:dustin.moody@nist.gov
mailto:yi-kai.liu@nist.gov
mailto:ray.perlner@nist.gov
mailto:dustin.moody@nist.gov
mailto:lawrence.bassham@nist.gov

PQC - API notes

Most of the API information is derived from the eBATS: ECRYPT Benchmarking of Asymmetric Systems (https://bench.cr.yp.to/ebats.html). This has been done to facilitate benchmarking algorithm performance. Please look at the eBATS page for more information on how to submit an algorithm for performance benchmarking. There are two sets of API calls listed for each primitive. The first set is the API call directly from the eBATS page, or something very similar for the Key Encapsulation Mechanism section. The second set of calls is for testing purposes. The calls extend the eBATS calls for functions that utilize randomness by providing a pointer to specify a randomness string. This will allow algorithms that utilize randomness to be able to provide reproducible results. For example, this will allow testing of KAT files and other sample values.

Public-key Signatures
See https://bench.cr.yp.to/call-sign.html for more information on Public-key Signature API and performance testing.

The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 256
 #define CRYPTO_PUBLICKEYBYTES 85
 #define CRYPTO_BYTES 128
 #define CRYPTO_RANDOMBYTES 64

indicating that your software uses a 256-byte (2048-bit) secret key, an 85-byte (680-bit) public key, at most 128 bytes of overhead in a signed message compared to the original message, and 64 bytes of random input.

Then create a file called sign.c with the following function calls:

	eBATS calls
		Generates a keypair - pk is the public key and sk is the secret key.

		int crypto_sign_keypair(
			unsigned char *pk,
			unsigned char *sk
)

Sign a message: sm is the signed message, m is the original message, and sk is the secret key.

		int crypto_sign(
			unsigned char *sm, unsigned long long *smlen,
			const unsigned char *m, unsigned long long mlen,
			const unsigned char *sk
)

Verify a message signature: m is the original message, sm is the signed message, pk is the public key.

		int crypto_sign_open(
			const unsigned char *m, unsigned long long *mlen,
			const unsigned char *sm, unsigned long long smlen,
			const unsigned char *pk
)

	KAT calls
		int crypto_sign_keypair_KAT(
			unsigned char *pk,
			unsigned char *sk,
			const unsigned char *randomness
)

		int crypto_sign_KAT(
			unsigned char *sm, unsigned long long *smlen,
			const unsigned char *m, unsigned long long mlen,
			const unsigned char *sk,
			const unsigned char *randomness
)

Public-key Encryption
See https://bench.cr.yp.to/call-encrypt.html for more information on Public-key Encryption API and performance testing.

The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 256
 #define CRYPTO_PUBLICKEYBYTES 64
 #define CRYPTO_BYTES 48
 #define CRYPTO_RANDOMBYTES 64

indicating that your software uses a 256-byte (2048-bit) secret key, a 64-byte (512-bit) public key, at most 48 bytes of overhead in an encrypted message compared to the original message, and 64 bytes of random input.

Then create a file called encrypt.c with the following function calls:

	eBATS calls
		Generates a keypair - pk is the public key and sk is the secret key.

		int crypto_encrypt_keypair(
			unsigned char *pk,
			unsigned char *sk
)

		Encrypt a plaintext: c is the ciphertext, m is the plaintext, and pk is the public key.

		int crypto_encrypt(
			unsigned char *c, unsigned long long *clen,
			const unsigned char *m, unsigned long long mlen,
			const unsigned char *pk
)

		Decrypt a ciphertext: m is the plaintext, c is the ciphertext, and sk is the secret key.

		int crypto_encrypt_open(
			unsigned char *m, unsigned long long *mlen,
			const unsigned char *c, unsigned long long clen,
			const unsigned char *sk
)

	KAT calls
		int crypto_encrypt_keypair_KAT(
			unsigned char *pk,
			unsigned char *sk,
			const unsigned char *randomness
)

		int crypto_encrypt_KAT(
			unsigned char *c, unsigned long long *clen,
			const unsigned char *m, unsigned long long mlen,
			const unsigned char *pk,
			const unsigned char *randomness
)

Key Encapsulation Mechanism (KEM)
The calls in the eBATS specification do not meet the calls specified in the call for algorithms. However, attempts were made to match the specifications for the other algorithms.

The first thing to do is to create a file called api.h. This file contains the following four lines (with the sizes set to the appropriate values):
 #define CRYPTO_SECRETKEYBYTES 192
 #define CRYPTO_PUBLICKEYBYTES 64
 #define CRYPTO_BYTES 64
 #define CRYPTO_CIPHERTEXTBYTES 128
 #define CRYPTO_RANDOMBYTES 64

indicating that your software uses a 192-byte (1536-bit) secret key, a 64-byte (512-bit) public key, a 64-byte (512-bit) shared secret, at most a 128-byte (1024-bit) ciphertext, and 64 bytes of random input.

Then create a file called kem.c with the following function calls:

	eBATS-like calls

		Generates a keypair - pk is the public key and sk is the secret key.

		int crypto_kem_keygenerate(
			unsigned char *pk,
			unsigned char *sk
)

Encapsulate - pk is the public key, ct is a key encapsulation message (ciphertext), ss is the shared secret.

		int crypto_kem_encapsulate(
			unsigned char *ct,
			unsigned char *ss,
			const unsigned char *pk
)

Decapsulate - ct is a key encapsulation message (ciphertext), sk is the private key, ss is the shared secret

		int crypto_kem_decapsulate(
			unsigned char *ss,
			const unsigned char *ct,
			const unsigned char *sk
)

	KAT calls
		int crypto_kem_keygenerate_KAT(
			unsigned char *pk,
			unsigned char *sk,
			const unsigned char *randomness
)

		int crypto_kem_encapsulate_KAT(
			unsigned char *ct,
			unsigned char *ss,
			const unsigned char *pk,
			const unsigned char *randomness
)

